Brightness perception, illusory contours, and corticogeniculate feedback.

نویسندگان

  • A Gove
  • S Grossberg
  • E Mingolla
چکیده

A neural network model is developed to explain how visual thalamocortical interactions give rise to boundary percepts such as illusory contours and surface percepts such as filled-in brightnesses. Top-down feedback interactions are needed in addition to bottom-up feed-forward interactions to simulate these data. One feedback loop is modeled between lateral geniculate nucleus (LGN) and cortical area V1, and another within cortical areas V1 and V2. The first feedback loop realizes a matching process which enhances LGN cell activities that are consistent with those of active cortical cells, and suppresses LGN activities that are not. This corticogeniculate feedback, being endstopped and oriented, also enhances LGN ON cell activations at the ends of thin dark lines, thereby leading to enhanced cortical brightness percepts when the lines group into closed illusory contours. The second feedback loop generates boundary representations, including illusory contours, that coherently bind distributed cortical features together. Brightness percepts form within the surface representations through a diffusive filling-in process that is contained by resistive gating signals from the boundary representations. The model is used to simulate illusory contours and surface brightness induced by Ehrenstein disks, Kanizsa squares, Glass patterns, and café wall patterns in single contrast, reverse contrast, and mixed contrast configurations. These examples illustrate how boundary and surface mechanisms can generate percepts that are highly context-sensitive, including how illusory contours can be amodally recognized without being seen, how model simple cells in V1 respond preferentially to luminance discontinuities using inputs from both LGN ON and OFF cells, how model bipole cells in V2 with two colinear receptive fields can help to complete curved illusory contours, how short-range simple cell groupings and long-range bipole cell groupings can sometimes generate different outcomes, and how model double-opponent, filling-in and boundary segmentation mechanisms in V4 interact to generate surface brightness percepts in which filling-in of enhanced brightness and darkness can occur before the net brightness distribution is computed by double-opponent interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How visual illusions illuminate complementary brain processes: illusory depth from brightness and apparent motion of illusory contours

Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally comple...

متن کامل

Differences in real and illusory shape perception revealed by backward masking

Illusory contours (ICs) are thought to be a result of processes involved in the perceptual recovery of occluded surfaces. Here, we investigate the relationship between real and illusory contour perception using a shape discrimination task and backward masking paradigm. ICs can mask other ICs when times between mask onset and stimulus onset, or SOAs, are very long ( approximately 300 ms), but re...

متن کامل

Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast

The White effect [Perception 8 (1979) 413] cannot be simply explained as due to either brightness contrast or brightness assimilation because the direction of the induced brightness change does not correlate with the amount of black or white border in contact with the gray test patch. This has led some investigators to abandon spatial filtering explanations not only for the White effect but for...

متن کامل

Subjective contours and apparent depth: a direct test.

however, explains such secondary effects associated with subjective contours as changes in brightness or in apparent depth. In contradistinction to the physiological explanations are a number of hypotheses that are primarily cognitive in nature. Kanizsa (1976) maintains that illusory contours are merely an unusually strong example of the Gestalt principle of closure. Other theorists suggest, ra...

متن کامل

Rapid activation of motor responses by illusory contours.

Whereas physiological studies indicate that illusory contours (ICs) are signaled in early visual areas at short latencies, behavioral studies are divided as to whether IC processing can proceed in a fast, automatic, bottom-up manner or whether it requires extensive top-down intracortical feedback or even awareness and cognition. Here, we employ a response priming paradigm to assess two measures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Visual neuroscience

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 1995